
Analysis

XOR Sort

Subtask 1 (25 points):
The main idea is to simulate bubble sort, where the array is sorted by swapping
adjacent members of an array. We can perform a swap of two adjacent members of the
array and by three-step operation (Where is XOR):Ai Aj ⊕

1. Aj ⊕ Ai
2. Ai ⊕ Aj
3. Aj ⊕ Ai

Array will transform like this: . A , A[i j] → A , A[i j ⊕ Ai] → A , A[j j ⊕ Ai] → A , A[j i]
Since the bubble sort can take at most swaps to sort, our method will finish in at2

n (n−1)*
most operations.≤400002

n (n−1)* * 3

Subtask 2 (35 points):
Here, since swapping is not a viable option, it’s likely that we should rearrange the array
with transformed values and then recover original values. Recovering the original values
is important, because the resulting array should not have equal members and
preserving original array elements is one way to ensure that. Our approach can be
divided into n stages. In each stage, we will swap the largest element to the end of the
unsorted part of the array. Consider the array , where is thea, b, c, d, e, f]A = [c
maximal element. Firstly, we transform our array to the following one in n − 1
operations: , after that, we will make following operations:a⊕b, b⊕c, c⊕d, d⊕e, e⊕f , f][

, so the array will change to … , A , A[c+1 c] , A , A[c+2 c+1] , A , A[n n−1]
. After that, we can change left part of same way:a⊕b, b⊕c, c⊕d, c⊕e, c⊕f , c][A
. Last two steps took maximum of (when thea⊕c, b⊕c, c⊕d, c⊕e, c⊕f , c][n − 1

maximum element is the first one) operations in total, i.e. each stage can take 2 * n − 2
operations. As we can see, all the elements, apart from the last, are the original
elements XOR-ed with . Now we can move on to the next stage, but we have to pickc
the maximum from the original array, not the transformed one. For example, if the
second maximum is , we will move fourth element of to fifth position (as alreadye A c
holds the last) even if some element became bigger after the previous transformations.

Analysis

XOR Sort

Suppose that would be increasingly sorted as follows: . Then, afterA b, f , a, d, e, c][
completing all the stages, which takes operations, will be like this:n)n * (− 1 A

 (for example, like in the first stage, at the end of the secondb⊕f , f⊕a, a⊕d, d⊕e, e⊕c, c][
stage, last (fifth) element would be , while all the elements before fifth would be⊕ce
XOR-ed with and , so we would have a similar situation as at the end⊕ce ⊕c⊕e⊕c ⊕ea = a
of the first stage). In the final sweep, we can recover original elements of doingA
following operations: . Finally, array is strictly… , A , A[n−1 n] , A , A[n−2 n−1] , A , A[1 2]
increasingly sorted and we took total of operations, which just below the limit n 2 − 1
when .00n = 2

Subtask 3 (40 points):
This subtask does not require distinct numbers, which gives us more freedom. We can
sort any array in operations in sweeps. In each sweep we find theA (n log n)O og nl
leftmost element in with the largest bit in its binary representation and then drag it toA
the end of the array. Suppose that such element is . We can perform the followingAi
operations:

1. If does not contain -s maximum bit, then , after which willAi+1 Ai Ai+1 ⊕ Ai Ai+1
contain that bit

2. which removes maximal bit from . In this way, we will drag this bit toAi ⊕ Ai+1 Ai
the end in at most operations.2 * n

It’s easy to see that after each sweep the maximal bit we can find in unsorted part of A
will decrease and since after 20 sweeps only zeros will be left besides the,Ai < 220
elements to which we already dragged some maximal bits, which is non-decreasing,
thus the array is sorted. In total, this method takes operations, which is02 * n * 2
exactly 40000 when .000n = 1

