
Analysis

Exam

To achieve a full score one could solve subtasks 2, 4 and 6 separately.

Subtask 2:
Go over the consecutive intervals of A with works that aren’t better than B1 and
accumulate the lengths of those intervals that contain at least one work equal to B1.
Since only one pass is needed it works in O(N).

To solve other two subtasks we will need the following observations:

● The works in the final state will appear in the same relative order as they were
originally

● student X may end up with student’s Y’s work if and only if in the interval
between X and Y (inclusive) there were no works that were better than X’s work

Any state that satisfies above requirements is reachable.
For each student X we can find the interval containing X and extending on both sides as
much as possible that doesn’t contain works better than X’s. This can be done in
multiple ways:

● Simple seek in each direction until we find better work, in O(N2) which is good
enough for most subtasks

● Using data structures (RMQ/Segment tree), in O(N logN)
● Single pass in each direction maintaining sorted stack, in O(N), similar to the one

described in the task Fountain
Using these precomputed intervals we can answer whether student Y can end up with
student X’s work in O(1) and doing these checks at appropriate times will be needed in
both subtasks.

Subtask 4:
We have to find the longest subsequence in B such that corresponding values in A are
in non-decreasing order. This can be done by solving a well known Longest Increasing
Subsequence (LIS) problem with O(N logN) solution.

Subtask 6:
We have to match the most values from B to A in the same order, which can be done in
O(N2) using the standard 2D dynamic programming similar to the one that solves
Longest Common Subsequence (LCS) problem.

