
Analysis

Exam

To achieve a full score one could solve subtasks 2, 4 and 6 separately.

Subtask 2:
Go over the consecutive intervals of A with works that aren’t better than B​1​ and
accumulate the lengths of those intervals that contain at least one work equal to B​1​.
Since only one pass is needed it works in O(N).

To solve other two subtasks we will need the following observations:

● The works in the final state will appear in the same relative order as they were
originally

● student X may end up with student’s Y’s work if and only if in the interval
between X and Y (inclusive) there were no works that were better than X’s work

Any state that satisfies above requirements is reachable.
For each student X we can find the interval containing X and extending on both sides as
much as possible that doesn’t contain works better than X’s. This can be done in
multiple ways:

● Simple seek in each direction until we find better work, in O(N​2​) which is good
enough for most subtasks

● Using data structures (RMQ/Segment tree), in O(N logN)
● Single pass in each direction maintaining sorted stack, in O(N), similar to the one

described in the task Fountain
Using these precomputed intervals we can answer whether student Y can end up with
student X’s work in O(1) and doing these checks at appropriate times will be needed in
both subtasks.

Subtask 4:
We have to find the longest subsequence in B such that corresponding values in A are
in non-decreasing order. This can be done by solving a well known Longest Increasing
Subsequence (LIS) problem with O(N logN) solution.

Subtask 6:
We have to match the most values from B to A in the same order, which can be done in
O(N​2​) using the standard 2D dynamic programming similar to the one that solves
Longest Common Subsequence (LCS) problem.

